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Abstract. A two-way nondeterministic finite transducer (2-NFT) is a
finite automaton with a two-way input tape and a one-way output tape.
The generated language of a 2-NFT is the set of all strings it can output
(across all inputs). Whereas two-way nondeterministic finite acceptors
(2-NFAs) accept only regular languages, 2-NFTs can generate languages
which are not even context-free, e.g. {anbncn | n ≥ 0}. We prove a
pumping lemma for 2-NFT languages which strengthens and general-
izes previous results. Our pumping lemma states that every 2-NFT lan-
guage L is k-iterative for some k ≥ 1. That is, every string in L above
a certain length can be expressed in the form x1y1x2y2 · · ·xkykxk+1,
where the ys can be “pumped” to produce new strings in L of the form
x1y

i
1x2y

i
2 · · ·xky

i
kxk+1.

1 Introduction

A pumping lemma for a language class C is a powerful tool for proving that
certain languages do not belong to C, and thus for separating one language class
from another. The pumping lemmas for regular and context-free languages are
well-known, and pumping lemmas have been proved for other language classes
as well. These lemmas differ in their specifics, but have in common that they
subject elements of the language to an iterated pumping operation which yields
new elements in the language. Pumping lemmas come in two strengths: universal
and existential. A universal pumping lemma states that all but finitely many
elements of the language can be pumped, whereas an existential pumping lemma
guarantees only that some element in the language can be pumped. The broader
the class of languages, the harder it is to provide it with a universal pumping
lemma, and the more intricate the pumping operation becomes.

In this paper we prove a universal pumping lemma for two-way finite trans-
ducers. A two-way nondeterministic finite transducer (2-NFT) is a finite au-
tomaton with a two-way input tape and a one-way output tape. At each step,
the machine can read the symbol under its input head, move its input head left
or right, change state, and append a string to the output tape. The final content
of the output tape is the output of the computation. Early studies of two-way
finite transducers include [1] and [12]; for a survey of early results, see [2].
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More recent work connects two-way finite transducers to monadic second-
order (MSO) logic [3, 4] and explores the relationship between nondeterministic
and sequential transducers [15] and between two-way and one-way transducers
[5].

As a transducer, a 2-NFT M can be viewed as a relation of input strings
to output strings, and thus as an operation which maps languages to other
languages. In addition to its role as a transducer, M can also be treated as a
language generator, generating a single language L(M), consisting of all strings
it can output (across all inputs). We call L(M) the generated language or range
of M . We denote the class of 2-NFT generated languages by L (2-NFT), and
the deterministic restriction by L (2-DFT).

It is well known that for finite-state acceptors, neither nondeterminism nor
two-way input allows recognition of any additional languages, so that we have:

1-DFA = 1-NFA = 2-DFA = 2-NFA = REG.
For transducers the case is different: 2-DFTs and 2-NFTs can generate lan-

guages which are not even context-free, e.g. {anbncn | n ≥ 0}. In fact, the
class L (2-DFT) equals APL, the languages generated by the absolutely parallel
grammars of [12], while L (2-NFT) equals 1-NCSA, the languages recognized by
one-way nondeterministic checking stack automata [12]. L (2-NFT) also equals
2-NFT(REG), the images of regular languages under 2-NFT transductions. Our
pumping lemma, which we prove for L (2-NFT), therefore holds for all of the
classes L (2-NFT) = 1-NCSA = 2-NFT(REG) and L (2-DFT) = APL.

The pumping operation we use involves the notion of k-iterativity [6]. For
k ≥ 1, a string s is k-iterative for a language L if s = x1y1x2y2 · · ·xkykxk+1

for some strings x1, . . . , xk+1, y1, . . . , yk, and {x1yi1x2yi2 · · ·xkyikxk+1 | i ≥ 0} is
an infinite subset of L. (The condition that the subset be infinite is equivalent
to requiring that y1 · · · yk is not empty.) Notice that if s is k-iterative for L, then
s is i-iterative for L for all i ≥ k. For k ≥ 1, a language L is k-iterative if
there is a c ≥ 0 such that for every s ∈ L where |s| > c, s is k-iterative for L.
L is weakly k-iterative if either L is finite, or some string is k-iterative for L.
Notice that every regular language is 1-iterative and every context-free language
is 2-iterative, due to the pumping lemmas for those classes.

In this paper we show that every language in L (2-NFT) is k-iterative for
some k ≥ 1. Our work strengthens and generalizes the following results, which
were proved for checking stack automata or related models but which apply to
two-way transducers through the equivalence L (2-NFT) = 1-NCSA.

(a) Greibach [8, Lemma 2.1] showed that every language in 1-NCSA over a
single-letter alphabet is 1-iterative.

(b) Rodriguez [13] showed that every reversal-bounded 1-NCSA language is k-
iterative for some k ≥ 1.

(c) As observed in [14, Lemma 3], the results of Greibach [6] imply that every
language in 1-NCSA is weakly k-iterative for some k ≥ 1.

Our result generalizes (a) to alphabets with multiple letters, extends (b) to
automata which are not reversal-bounded, and strengthens (c) to k-iterativity
instead of weak k-iterativity.
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1.1 Proof techniques

A useful tool for analyzing the behavior of an automaton on a two-way tape
is the notion of a “visiting sequence”. For each square of the tape, the visiting
sequence at that square is the sequence of states in which the square is visited
during the computation. In a pumping argument, one shows that either the
machine visits the same input square twice in the same state, in which case the
intervening computation can be repeated, or else two squares have the same
visiting sequence, in which case the region between them can be pumped.

We extend this argument to work with two-way finite transducers. Here,
it is not enough to show that the input can be pumped to yield new accept-
ing computations; it is also necessary that the outputs of those computations
exhibit a k-iterative pattern. In particular, it is necessary to deal with zigzags
(repeated changes of direction) in the computation path, which tend to fragment
the pumped output. We do so by finding regions of the computation with small
zigzags, occurring near positions of the input string with matching “neighbor-
hoods” of surrounding input symbols. Zigzags at these positions stay within their
neighborhoods, allowing pumping to proceed with a k-iterative output pattern.

1.2 Related work

The classic paper of Rabin and Scott [10] presented a technique of zigzag elim-
ination to show the equivalence of two-way and one-way finite acceptors. From
an original two-way automaton they define a new derived automaton which per-
forms fewer zigzags, and then repeat this derivation operation until a one-way
automaton is obtained. Recent work of Filiot et al. [5] extends Rabin and Scott’s
proof to a subset of nondeterministic transducers called functional transducers,
in order to build a one-way functional transducer from a two-way functional
transducer whenever one exists. In the present work we take a different ap-
proach: instead of eliminating zigzags, we locate regions of the computation
with small zigzags and identical neighborhoods of surrounding input symbols,
so that zigzags can occur within these neighborhoods without disrupting our
pumping operation.

Greibach [7] defines a notion of strong k-iterativity, which goes beyond k-
iterativity by allowing certain positions of a string to be designated as distin-
guished in the pumping operation. Greibach shows that a certain language L
in 2-DFT(REG) is not strongly k-iterative for any k ≥ 1 (Lemma 5.4 of [7]
and its corollary). It is not difficult to show that this particular language L is
nonetheless k-iterative for some k ≥ 1, in accordance with our main result.

The class of languages MCFL generated by multiple context-free grammars,
a generalization of context-free grammars, has been studied in connection with
k-iterativity. As with L (2-NFT), it was known that every MCFL is weakly k-
iterative for some k ≥ 1, but whether k-iterativity held was not known. Recent
work resolves this question, showing that in fact there is an MCFL which is not
k-iterative for any k [9].
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1.3 Outline of paper

The paper is organized as follows. Section 2 gives preliminary definitions con-
cerning two-way finite transducers. Section 3 gives a framework for a pumping
argument and explains the challenges to be overcome in applying it to transduc-
ers. Section 4 proves our pumping lemma for L (2-NFT). Section 5 provides an
application of the pumping lemma. Section 6 gives our conclusions.

2 Preliminaries

An alphabet A is a finite set of symbols. A string x is an element of A∗. The
length of x is denoted by |x|. We denote the empty string by λ. For 1 ≤ i ≤ |x|,
x[i] denotes the ith symbol of x. A language is a subset of A∗.

A two-way nondeterministic finite transducer (2-NFT) is a tupleM =
(Q,A,B, P, qin, qout) where Q is a finite set of states, A is the input alphabet, B
is the output alphabet, qin, qout ∈ Q are the initial and final states, respectively,
and P is a finite subset of (Q−{qout})× (A∪{., /})×B∗×Q×{−1, 0, 1}. The
symbols . and / are the left and right endmarkers, respectively.

A step I of M is a tuple (q, .x/, y, i) for q ∈ Q, x ∈ A∗, y ∈ B∗, and i an
integer. We call I a visit of i. We write (q, .x/, y, i) ` (q′, .x/, ys, i+j) if 1 ≤ i ≤
| . x / | and (q, (.x/)[i], s, q′, j) is in P . For n ≥ 1, an accepting computation
C with input x and output y is a sequence of steps I1 ` I2 ` · · · ` In where
I1 = (qin, .x/, λ, 1) and In = (qout, .x/, y, i) for some i. By |C| we mean the
number of steps in C and by C[i] we mean the ith step of C.

We call M returning if for every accepting computation C, the last step of
C has the form (qout, .x/, y, 1). Clearly for every 2-NFT M , there is a returning
2-NFT M ′ such that L(M) = L(M ′). (Whenever M would enter qout, M

′ first
moves to the left endmarker, and then enters qout.)

We define 2-NFT transductions over strings, languages, and families of lan-
guages. For a string x, let M(x) = {y | M has an accepting computation with
input x and output y}. For a language L, let M(L) = {y ∈ M(x) | x is in L}.
For a family of languages L , let 2-NFT(L ) = {M(L) |M is a 2-NFT and L is
in L }.

2-NFTs can also be viewed as language generators. Let L(M) = M(A∗).
L(M) is called the “generated language”, or “range” of M . Let L (2-NFT) =
{L(M) | M is a 2-NFT}. Clearly L (2-NFT) = 2-NFT(REG), since the finite-
state control of a 2-NFT can be used to check whether or not an input word in
A∗ is in some particular regular language L.

3 Pumping framework

In this section we give a framework for a pumping argument on a two-way tape
and explain the challenges to be overcome in applying it to transducers. We keep
the discussion at a high level, giving a more formal treatment in Section 4.



A Pumping Lemma for Two-Way Finite Transducers 5

A useful tool for analyzing the behavior of an automaton on a two-way tape
is the notion of a visiting sequence. For each square of the tape, the visiting
sequence at that square is the sequence of states in which the square is visited
during the computation. In a pumping argument, one shows that either the
machine visits the same input square twice in the same state, in which case the
intervening computation can be repeated, or else two squares have the same
visiting sequence, in which case the region between them can be pumped. By
choosing the original computation to be a shortest computation for its output
string, we ensure that the pumped portion of the path has non-empty output,
and therefore that the pumping operation produces an infinity of new strings.

b
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s 1

s 2

s3

s
4

s5

s 6

s7

s
8

s
9

q1 q2 q3 q4

q1 q2 q3 q4

Fig. 1.

Let us apply this basic idea to a 2-NFT M . Consider a shortest accepting
computation C (i.e., one with fewest steps, and in the case of a tie, with shortest
input) for an output string s. Suppose C has the form shown in Figure 1. The
input tape is represented as a vertical line whose bottom corresponds to the
left end of the tape and whose top corresponds to the right end. The steps of
the computation are depicted as a path winding back and forth along the input
tape. Each si designates the output of the machine during some portion of the
computation, and each qi designates the state of the machine at a particular
point. Thus the output of this computation is the string s = s1s2s3s4s5s6s7s8s9.
The two input positions a and b can be seen to have the same visiting sequence
(q1, q2, q3, q4). This means that the input region r which separates a and b can
be removed, yielding a computation C0 with output s1s3s5s7s9. Alternatively, r
can be duplicated, yielding a computation C2 with output s1s

2
2s3s

2
4s5s

2
6s7s

2
8s9.

In general, with i ≥ 0 copies of region r, we can obtain a computation Ci

with output s1s
i
2s3s

i
4s5s

i
6s7s

i
8s9. Suppose s2s4s6s8 = λ. Then s = s1s3s5s7s9.

But then C0 is a shorter computation for s than C, a contradiction. Therefore
|s2s4s6s8| ≥ 1, making s 4-iterative for L(M).

Problems arise, however, if C instead has a form which zigzags through cross-
ings of r, as in Figure 2. Here, a and b still have the same visiting sequence, so we
can still remove or duplicate r and complete the computation, but the new out-
put strings will not have the form needed to make the original string s k-iterative
for L(M). For example, if we remove r, we can complete the computation by
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skipping from q1 at a to q1 at b, from q2 at b back to q2 at a, from q3 at a to
q3 at b, and finally from q4 at b to q4 at a. We thereby obtain the output string
s1s5s3s7s9. But in this string, s5 precedes s3, whereas in s, s3 precedes s5. The
new string therefore does not have the right form for showing that s is k-iterative
for L(M). Thus the pumping argument does not go through as it stands.

b + n

b

b− n

a + n

a

a− n

s 1

s2

s3

s 4

s5

s6

s7

s
8

s
9

q1 q2 q3 q4

q1 q2 q3 q4

Fig. 3.

To resolve this issue, we will find input positions a and b which not only
have appropriate visiting sequences, but also have matching “neighborhoods” of
surrounding input symbols large enough to encompass any problematic zigzags.
The zigzags in these neighborhoods can then be retained for the pumping and
shrinking operations. For example, in Figure 3, suppose the input region from
a−n to a+n is identical to the input region from b−n to b+n; that is, a and b have
the same neighborhood out to n symbols above and below. Now when we remove
r, we do not have to skip from q2 at b back to q2 at a as before, but can proceed
from q2 at b to q3 at b, outputting s6. This is possible because the s6 portion of
the computation never leaves the lower neighborhood of b, so with r removed,
it will never leave the lower neighborhood of a, and these two neighborhoods
are the same. We thus obtain a computation C0 with output s1s5s6s7s9. If we
duplicate r, then since the s3 portion of the computation never leaves the lower
neighborhood of a, we can repeat the segments from q1 at a to q1 at b and from
q4 at b to q4 at a, obtaining the output s1(s2s3s4)2s5s6s7s

2
8s9. In general, with
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i ≥ 0 copies of region r, we can obtain the output s1(s2s3s4)is5s6s7s
i
8s9. Now

suppose s2s3s4s8 = λ. Then s = s1s5s6s7s9 and C0 is a shorter computation for
s than C, a contradiction. Hence |s2s3s4s8| ≥ 1, making s 2-iterative for L(M).

In Section 4 we give the details of this argument, showing that if the original
output string is sufficiently long, then there is always a region with visiting
sequences and surrounding neighborhoods fit for shrinking and pumping in a
form which yields k-iterativity. This will allow us to prove our pumping lemma
for L (2-NFT).

4 Pumping lemma

In this section we prove our pumping lemma for L (2-NFT), formalizing the
high-level approach outlined in Section 3.

Theorem 1. Suppose L is in L (2-NFT). Then L is k-iterative for some k ≥ 1.

Proof. We begin with some definitions. Take M = (Q,A,B, P, qin, qout) to be a
returning 2-NFT such that L(M) = L. We define a function f over the integers

from 1 to b |Q|2 c+ 1, as follows.

f(i) =

{
1 : i = b |Q|2 c+ 1

|A|2f(i+1)+1 · |Q|2i + 2f(i+ 1) + 2 : 1 ≤ i ≤ b |Q|2 c

Notice that for 1 ≤ i ≤ b |Q|2 c, f(i) > f(i+ 1). Let k = |Q|. If L is finite, then
trivially L is k-iterative. So say L is infinite. Let r be the highest i such that for
some (q, d, s, q′, j) ∈ P , |s| = i. This is the length of the longest string that M
can add to its output in a single step. Let c = (f(1) + 2) · |Q| · r + r. Take any
y ∈ L such that |y| > c. We will show that y is k-iterative for L.

Let a shortest computation for y be an accepting computation C with output
y such that for every accepting computation C ′ with output y, |C| ≤ |C ′| and if
|C| = |C ′|, then |x| ≤ |x′|, where x is the input of C and x′ is the input of C ′.
Take any shortest computation C for y. Let x be the input of C.

Each step i of the computation C has the form (qi, .x/, si, vi). We will view
C as a path and each step of C as a node on the path. We call each position on
the input tape from 1 to | . x / | a level and we call vi the level at node i. We
have v1 = v|C| = 1; that is, the path starts at level 1 (the left endmarker) and
also ends at level 1 (since M is returning). The level of each node differs from
that of its predecessor by at most 1.

For 1 ≤ i ≤ j ≤ |C|, we call the sequence C[i], . . . , C[j] a subpath from i to
j. A hill h at level l is a subpath from i to j of length > 2 such that vi = vj = l
and for all m such that i < m < j, vm > l. The top of h is max(vi, . . . , vj) and
the height of h is max(vi, . . . , vj)− l. A valley v at level l is a subpath from
i to j of length > 2 such that vi = vj = l and for all m such that i < m < j,
vm < l. The bottom of v is min(vi, .., vj) and the depth of v is l−min(vi, .., vj).

With these definitions in place, the proof idea is as follows. If some level has
more than |Q| visits, we will see that y is 1-iterative for L. Otherwise, the input
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string x is long enough that it contains a “smooth” region (l to l+ f(n) below),
one with small hills and valleys. Within this region we find two levels a and b
with similar neighborhoods and visiting sequences. The smoothness of the region
then permits a pumping argument applied to the area between a and b to show
that y is k-iterative for L.

So suppose some level has more than |Q| visits. Then M visits the same input
position twice in the same state. Suppose M produces no output between these
two visits. Then C could be shortened, a contradiction. So between the two
visits M produces some non-empty output w. Then we can “pump” (repeat)
the intervening computation. Hence y = uwz for some strings u and z, and
{uwiz | i ≥ 0} is an infinite subset of L. Then y is 1-iterative for L, hence
k-iterative for L. So say no level has more than |Q| visits. Notice that we now
have |Q| ≥ 2, since if |Q| = 1, then M can only visit the left endmarker once, so
since C must begin and end at the left endmarker, we have |C| = 1 and y = λ,
which contradicts the fact that |y| > c.

Since no level has more than |Q| visits, |.x/ | ≥ |y|
|Q|·r . Hence |x| ≥ |y|

|Q|·r −2 >
c
|Q|·r −2 = (f(1)+2)·|Q|·r+r

|Q|·r −2 > f(1). Every position of x is visited at least once,

otherwise x could be shortened and C would still output y, a contradiction.

Therefore level 1 has a hill of height > f(1). So take the highest n ≤ b |Q|2 c
such that some level has ≥ n hills of height > f(n). We have 1 ≤ n ≤ b |Q|2 c
and f(n) > f(n + 1) ≥ 1. Notice that no level i has ≥ n + 1 hills of height

> f(n + 1), since if n < b |Q|2 c, then this would contradict the construction of

n, and if n = b |Q|2 c, then since level i + 1 has at least two visits for each hill of
height > 1 at level i, level i+1 would have more than |Q| visits, a contradiction.
So take any level l with ≥ n hills of height > f(n). Then since f(n) > f(n+ 1),
l must have exactly n hills of height > f(n). For the same reason, level l cannot
have a hill whose height is > f(n+ 1) but ≤ f(n).

Further, suppose some level i ≤ l + f(n) has a valley v of depth > f(n+ 1)
whose bottom is above l. Consider the n hills of height > f(n) at level l. Since
the bottom of v is above l, either v is contained completely by one of these n
hills, or it is not part of any of them. If it is not part of any of them, then it
is part of another hill at level l, but then level l has ≥ n + 1 hills of height
> f(n+ 1), a contradiction. If v is contained completely by one of the n hills of
height > f(n) at level l, then this hill contains two hills of height > f(n+ 1) at
level i − f(n + 1) (one on each side of v). But then level i − f(n + 1) contains
≥ n+ 1 hills of height > f(n+ 1), a contradiction. So there is no such level i.

We will refer to the n hills at level l which are of height > f(n) as hill
1, . . . , hill n. For any level i from l + f(n + 1) to l + f(n) − f(n + 1), call
x[i− f(n+ 1)] · · ·x[i+ f(n+ 1)] the neighborhood of i. For j from 1 to n, let
in(i, j) be the first node at level i in hill j, and let out(i, j) be the last node at
level i in hill j. Recall that qm is the state of M at step m of C. Let the pair
list of i be a list of n pairs of states such that for 1 ≤ j ≤ n, the jth pair is
(qin(i,j), qout(i,j)).
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l + f(n)

b + f(n + 1)

b

b− f(n + 1)

a + f(n + 1)

a

a− f(n + 1)

l

in(b, i) out(b, i)

in(a, i) out(a, i)

Fig. 4. An example hill i at level l.

There are at most p1 = |A|2f(n+1)+1 distinct neighborhoods, and at most
p2 = |Q|2n distinct pair lists. From l + f(n + 1) + 1 to l + f(n) − f(n + 1) − 1
there are f(n) − 2f(n + 1) − 1 levels. Then since f(n) − 2f(n + 1) − 1 > p1p2,
there are levels a, b such that l + f(n + 1) < a < b < l + f(n) − f(n + 1) and
a and b have the same neighborhood and pair list. See Figure 4 for an example
hill i passing through levels a and b. We make some observations O1, O2, O3 for
use below.

O1. For any hill i such that 1 ≤ i < n, the portion of C between out(a, i)
and in(a, i + 1) never reaches level a, since if it did so as part of hill i, then
out(a, i) would not be the last node at level a in hill i, if it did so as part of
hill i + 1, then in(a, i + 1) would not be the first node at level a in hill i + 1,
and if it did so between hills i and i + 1, then level l would have a hill whose
height is > f(n+ 1) but ≤ f(n), which we observed to be impossible. Similarly,
the portion of C before in(a, 1) never reaches level a, and the portion of C after
out(a, n) never reaches level a.

O2. For any hill i, the portion of C from in(a, i) to out(a, i) never goes
below the neighborhood of a, since if it did, then a would have a valley of depth
> f(n+ 1) whose bottom is above l (since this portion of the path is in a hill of
l), which we observed to be impossible.

O3. Similarly, for any hill i, the portion of C from in(b, i) to out(b, i) never
goes below the neighborhood of b.

We now break up y into substrings, where each substring designates the out-
put produced during a range of steps of C. Recall that si is the output produced
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from step i of C. Let h0 = s1 · · · sin(a,1)−1 and for i from 1 to n, let:

ei = sin(a,i) · · · sin(b,i)−1
fi = sin(b,i) · · · sout(b,i)−1
gi = sout(b,i) · · · sout(a,i)−1

hi =

{
sout(a,i) · · · sin(a,i+1)−1 if 1 ≤ i < n

sout(a,i) · · · s|C| if i = n

We have y = h0 e1f1g1h1 · · · enfngnhn. For i ≥ 0, let yi = h0 e
i
1f1g

i
1h1 · · ·

einfng
i
nhn. We will show that {yi | i ≥ 0} is an infinite subset of L, and thus

that y (= y1) is 2n-iterative for L.

First we show that y can be “shrunk”, i.e. that y0 is in L. We construct a
computation C0 with input x[1] · · ·x[a−1] x[b] · · ·x[|x|] which will follow C, but
skip some steps. C0 proceeds as follows. Follow C until in(a, 1), outputting h0.
This is possible due to O1. For i from 1 to n, continue as follows. Skip to in(b, i),
which is possible because qin(a,i) = qin(b,i). Proceed from in(b, i) to out(b, i),
outputting fi. This is possible because due to O3, in C this portion never went
below the neighborhood of b, so in C0 it will never go below the neighborhood
of a, and these two neighborhoods are equal. Skip from out(b, i) to out(a, i).
This is possible because qout(b,i) = qout(a,i). If i < n, proceed from out(a, i) to
in(a, i+ 1), outputting hi (possible due to O1). If i = n, proceed from out(a, n)
to the end of C, outputting hn and finishing in the final state qout (possible due
to O1). C0 is now an accepting computation with output y0, which is therefore
in L.

Next we show that y can be “pumped”, i.e. that ym is in L for each m ≥ 2.
So take any m ≥ 2. We show how to construct a computation Cm with input
x[1] · · ·x[a − 1] (x[a] · · ·x[b − 1])m x[b] · · ·x[|x|] which will follow C, but repeat
some steps. Cm proceeds as follows. Follow C until in(a, 1), outputting h0. This
is possible due to O1. For i from 1 to n, continue as follows. Perform the portion
of C from in(a, i) to in(b, i) m times, each time outputting ei. This is possible
because qin(a,i) = qin(b,i), and because due to O2, in C this portion never goes
below the neighborhood of a (or above level b, since in(b, i) is the first node at
level b in hill i), and in Cm, for j from 1 to m, the neighborhood of a+ j(b− a)
equals the neighborhood of a. Now Cm is at level a + m(b − a). Proceed from
in(b, i) to out(b, i), outputting fi. This is possible due to O3. Next, perform
the portion of C from out(b, i) to out(a, i) m times, each time outputting gi.
This is possible because qout(b,i) = qout(a,i), and because in C this portion never
goes above level b (since out(b, i) is the last node at level b in hill i) or below
the neighborhood of a (due to O2). Now if i < n, proceed from out(a, i) to
in(a, i+ 1), outputting hi (possible due to O1). If i = n, proceed from out(a, n)
to the end of C, outputting hn and finishing in the final state qout (possible due
to O1). Cm is now an accepting computation with output ym, which is therefore
in L. Hence {yi | i ≥ 2} is a subset of L.

Finally, suppose e1g1 · · · engn = λ. Then y0 = y and C0 is an accepting
computation with output y, a contradiction, since |C0| < |C| and C is a shortest
computation for y. So e1g1 · · · engn 6= λ. Then {yi | i ≥ 0} is an infinite language.
Hence {yi | i ≥ 0} is an infinite subset of L. Therefore y is 2n-iterative for L.

Then since n ≤ b |Q|2 c and k = |Q|, we have 2n ≤ k, so y is k-iterative for L. So
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for any y ∈ L such that |y| > c, y is k-iterative for L. Hence L is k-iterative,
which was to be shown. ut

5 Application

In this section we apply our pumping lemma to show that a particular language
of interest does not belong to L (2-NFT). Addressing the question of whether
a certain type of “mildly context-sensitive” grammars can generate the class of
natural languages, Radzinksi [11] considers the system of Chinese number-names.
In particular, he examines the set L consisting of number-names composed only
of instances of wu (five) and zhao (trillion):

L = {wu (zhao)k1 wu (zhao)k2 · · · wu (zhao)kn | k1 > k2 > · · · kn > 0}

Radzinski shows that L cannot be generated by the class TAG of tree ad-
joining grammars; we will show that it also cannot be generated by a 2-NFT.
The string wu zhao zhao is 1-iterative for L, since {wu zhao (zhao)i | i ≥ 0}
is an infinite subset of L. The language L is therefore weakly 1-iterative. At
first glance it might seem that L is also 1-iterative, since we can pump the first
zhao in any string. For example, for the string wu zhao zhao wu zhao we have
{wu (zhao)i zhao wu zhao | i ≥ 1}, which is an infinite subset of L. But re-
call that k-iterativity requires the pumping index i to start at 0, not 1, and
{wu (zhao)i zhao wu zhao | i ≥ 0} is not a subset of L. In fact, Radzinski
shows that a related language (K below) is not k-iterative for any k ≥ 1. Our
pumping lemma then gives the following result.

Theorem 2. L is not in L (2-NFT).

Proof. Let K be the language {a bk1 a bk2 · · · a bkn | k1 > k2 > · · · kn > 0}.
The proof of Lemma 2 of Radzinski [11] shows that K is not k-iterative for
any k ≥ 1. Then by our Theorem 1, K is not in L (2-NFT). Suppose L is in
L (2-NFT). Let h be a homomorphism from {w, u, z, h, a, o}∗ to {a, b}∗ such
that h(wu) = a and h(zhao) = b. Then K is the image of L under h. By Lemma
1.1 of [8], L (2-NFT) is closed under substitution. Then K is in L (2-NFT), a
contradiction. So L is not in L (2-NFT). ut

6 Conclusion

In this paper we have proved a pumping lemma for the class L (2-NFT) of lan-
guages generated by two-way nondeterministic finite transducers. Our pumping
lemma strengthens and generalizes previous results for this class. We gave an
example of a language of interest which can be shown using our pumping lemma
not to belong to L (2-NFT), and we hope that our lemma will help to obtain
similar results in other cases. One direction for further research would be to
generalize our lemma to broader classes of languages. For example, recall that
L (2-NFT) = 2-NFT(REG). Where CFL denotes the context-free languages, the
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class 2-NFT(CFL) properly contains 2-NFT(REG), since 2-NFT(REG) does not
contain CFL [6, Theorem 4.26]. We can then ask whether our pumping lemma
can be generalized to apply to 2-NFT(CFL). More broadly, it would be inter-
esting to know whether such a lemma holds for all 2-NFT(L ) where L is a
language class such that every language in L is k-iterative.
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